Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zong-Xiao Li* and Xin-Li Zhang

Department of Chemistry, Baoji College of Arts and Sciences, Baoji 721007, People's Republic of China

Correspondence e-mail:
baojizhangxinli@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.006 \AA$
R factor $=0.045$
$w R$ factor $=0.146$
Data-to-parameter ratio $=17.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetrapyridinedithiocyanatocopper(II)

The title compound, $\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$, is a mononuclear copper(II) complex. The $\mathrm{Cu}^{\text {II }}$ atom, lying on an inversion center, is six-coordinated by four pyridine N atoms and by another two N atoms of two thiocyanate anions in a slightly distorted octahedral geometry.

Comment

Transition metal complexes play an important role in the development of coordination chemistry. Since copper complexes have potential applications in the design and construction of new magnetic materials, the study of copper complexes is of great interest in various aspects of chemistry. As an extension of work on the structural characterization of copper(II) complexes, a mononuclear copper(II) complex, (I), is reported here.

(I)

The title compound, (I), is a centrosymmetric copper(II) complex (Fig. 1). The $\mathrm{Cu}^{\text {II }}$ ion in the complex is in an octahedral geometry and is six-coordinated by four N atoms of four pyridine ligands and by another two N atoms of two thiocyanate anions. The thiocyanate anion is a monodentate ligand and coordinates to the Cu atom via the terminal N atom. The three trans angles for the copper(II) octahedron are all 180° (Table 1), from symmetry, and all other angles around the $\mathrm{Cu}^{\text {II }}$ atom are close to 90°, varying from 86.97 (9) to $93.03(9)^{\circ}$, indicating a slightly distorted octahedral geometry of the $\mathrm{Cu}^{\text {II }}$ atom. The $\mathrm{Cu} 1-\mathrm{N} 1$ bond length of 2.203 (2) \AA is much longer than the value of 1.946 (2) \AA observed in another copper(II) complex (Andac et al., 2002). The Cu1-N3 bond length is a little longer than the value of 1.938 (4) \AA observed in yet another copper(II) complex (Jiang et al., 2004).

Experimental

Pyridine ($0.2 \mathrm{mmol}, 15.8 \mathrm{mg}$) and ammonium thiocyanate (0.1 mmol , 6.0 mg) were dissolved in methanol (5 ml) and a methanol solution $(10 \mathrm{ml})$ of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 21.7 \mathrm{mg})$ was added with stirring. The mixture was stirred for 1 h at room temperature to give a clear blue solution. The solution was allowed to stand in air for 18 d ,

Received 29 September 2004
Accepted 4 October 2004 Online 9 October 2004

Figure 1
The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Unlabelled atoms are related to labelled atoms by the symmetry operation $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$.
whereupon blue block-shaped crystals formed on slow evaporation of the solvent.

Crystal data

$\left[\mathrm{Cu}(\mathrm{NCS})_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$
$M_{r}=496.10$
Monoclinic, $C 2 / c$
$a=12.420(2) \AA$
$b=12.999(2) \AA$
$c=15.180(3) \AA$
$\beta=107.245(3)^{\circ}$
$V=2340.7(7) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.408 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 3236 \\
& \quad \text { reflections } \\
& \theta=2.3-27.3^{\circ} \\
& \mu=1.13 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, blue } \\
& 0.26 \times 0.23 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector diffractometer

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.757, T_{\text {max }}=0.822$ 6801 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.146$
$S=1.07$
2425 reflections
142 parameters
H -atom parameters constrained

Figure 2
The crystal packing of (I), viewed along the b axis.

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 3$	$2.077(2)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.219(2)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.203(2)$		
$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 3$	180	$\mathrm{~N} 1-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$86.97(9)$
$\mathrm{N} 3^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1$	$89.25(10)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 2$	$90.54(10)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{N} 1$	$90.75(10)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$93.03(9)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	180	$\mathrm{~N} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 2$	180
$\mathrm{~N} 3-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$89.46(10)$		
Symmetry code: $(\mathrm{i}) \frac{1}{2}-x, \frac{1}{2}-y, 1-z$.			

All H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Baoji College of Arts and Sciences for research grant No. 02js 40 .

References

Andac, O., Guney, S., Topcu, Y., Yilmaz, V. T. \& Harrison, W. T. A. (2002). Acta Cryst. C58, m17-m20.
Bruker (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Jiang, Y.-B., Kou, H.-Z., Gao, F. \& Wang, R.-J. (2004). Acta Cryst. C60, m261m262.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

